Методика формирования первичных и уточнённых значений исходных данных

Мочалов В.Ф.

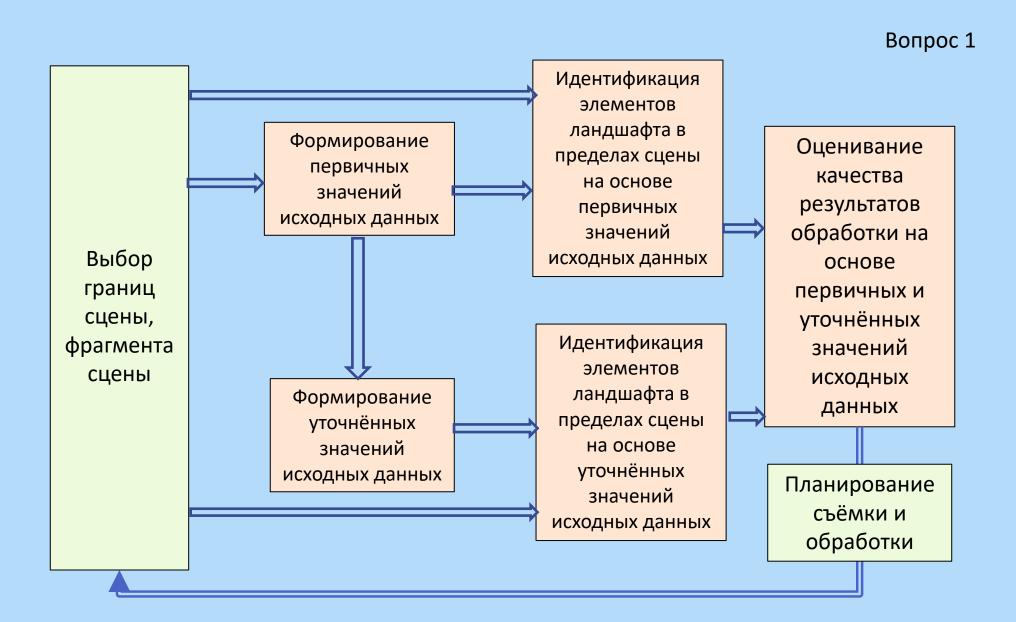
Военно- космическая академия имени А.Ф. Можайского

Цель: формирование первичных и уточненных значений исходных данных в пределах фрагмента сцены для повышения качества результатов обработки материалов съёмки.

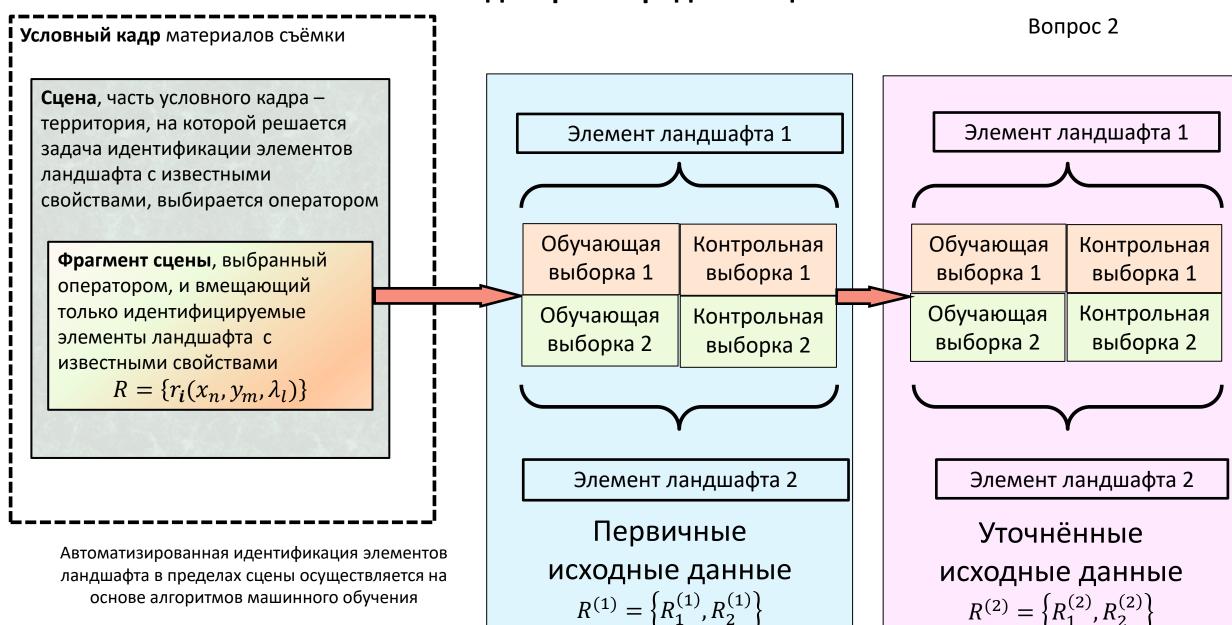
В качестве исходных данных рассматривается множество пикселей, представляющих элементы ландшафта $R = \{r_i(x_n, y_m, \lambda_l)\}$.

Рассматривается задача идентификации или семантической сегментации элементов ландшафта в пределах сцены на основе материалов мультиспектральной съёмки.

Вопросы, обсуждаемые в стендовом докладе:

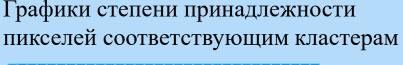

- 1. Операции и структурная схема методики
- 2. Состав исходных данных и пример формирования первичных и уточнённых значений исходных данных
- 3. Порядок расчета базовых и обобщенных показателей качества результатов обработки материалов съёмки
- 4. Выводы

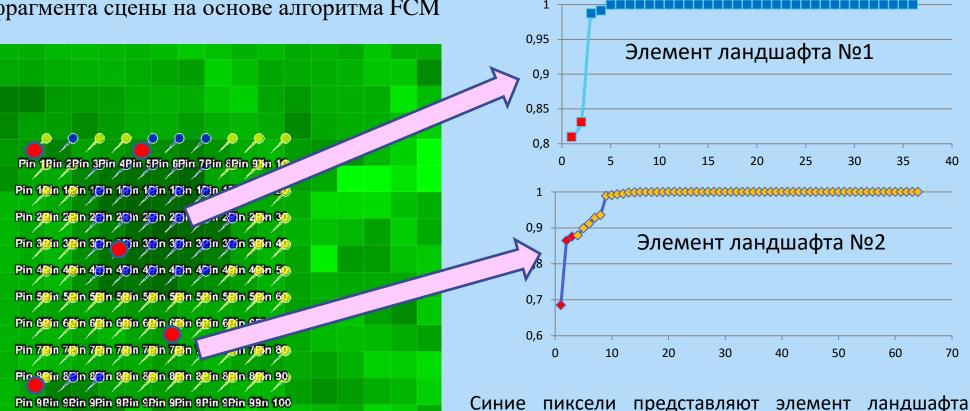
Операции методики


Вопрос 1

- Выбор оператором условных границ сцены, на которой планируется решить задачу автоматизированной идентификации элементов ландшафта, а также фрагмента сцены, содержащего только элементы ландшафта с известными свойствами для формирования исходных данных;
- автоматизированное формирование первичных значений исходных данных для элементов ландшафта в пределах фрагмента сцены в части обучающих и контрольных выборок на основе математического аппарата нечёткой кластеризации (FCM);
- формирование уточнённых значений исходных данных на основе анализа степени принадлежности элементов изображения (пикселей) рассматриваемым кластерам;
- идентификация элементов ландшафта в пределах сцены на основе первичных и уточнённых значений обучающей выборки и одного из алгоритмов машинного обучения;
- оценивание базовых показателей качества результатов обработки материалов съёмки на основе первичных и уточненных значений исходных данных, анализ полученных результатов.

Структурная схема методики формирования первичных и уточнённых значений исходных данных

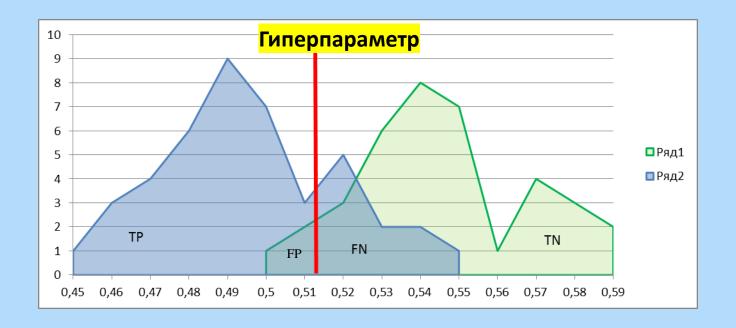

Состав исходных данных для идентификации элементов ландшафта в пределах сцены



Пример формирования первичных и уточнённых значений исходных данных в пределах фрагмента сцены _____

Вопрос 2

Результаты кластеризации в рамках фрагмента сцены на основе алгоритма FCM



Синие пиксели представляют элемент ландшафта № 1, желтые –элемент ландшафта № 2.

Красными точками отмечены пиксели с невысокой степенью принадлежности рассматриваемым кластерам. Уточнение значений исходных данных осуществляется за счет обоснованного их исключения из обучающих и контрольных выборок.

Пример расчёта базовых показателей качества результатов идентификации элементов ландшафта в пределах сцены

Вопрос 3

TP (True Positive) - количество пикселей истинно принадлежащих элементу ландшафта №1; TN (True Negative)-количество пикселей истинно принадлежащих элементу ландшафта №2; FP (False Positive)-количество пикселей ошибочно принадлежащих элементу ландшафта №1; FN (False Negative)-количество пикселей ошибочно принадлежащих элементу ландшафта №2.

Обобщенные показатели качества результатов обработки материалов съемки

Вопрос 3

Показатель	Описание		
$REC = \frac{TP}{TP + FN}$	Чувствительность- доля в контрольной выборке элементов ландшафта, которые характеризуются условно положительными свойствами (элемент 1)		
$PRE = \frac{TP}{TP + FP}$	Точность — это отношение между истинно положительными и всеми положительными результатами идентификации.		
$OA = \frac{TP + TN}{TP + TN + FP + FN}$	Общая точность привлекаемого метода обработки, полезно знать, когда каждый идентифицируемый элемент ландшафта одинаково важен.		
$F1 = 2\frac{PRE * REC}{PRE + REC}$	Комплексный показатель объединяющий показатели <i>REC</i> и <i>PRE</i> в виде гармонического среднего		
$F_{\beta} = \frac{(1+\beta^2)PRE\ REC}{\beta^2 PRE + REC}$	$\begin{cases} \beta < 1 \to PRE \\ \beta > 1 \to REC \end{cases}$		

Пример расчета числовых значений показателей качества обработки материалов съёмки

Вопрос 3

Показатели качества при значении гиперпараметра 0,45

	пид	УИД	ΔΑ	δ, %
TP	40	40		
TN	52	52		
FP	0	0		
FN	7	3		
REC	0,85	0,93	0,08	8,51
PRE	1,00	1,00		
OA	0,93	0,97	0,04	4,04
F1	0,92	0,96	0,04	4,60

Выводы

- 1. Представлена методика формирования исходных данных, которые могут применяться при идентификации элементов ландшафта в пределах рассматриваемой сцены на основе алгоритмов машинного обучения.
- 2. Методика основана на применении математического аппарата нечёткой кластеризации в рамках фрагмента сцены и обеспечивает формирование первичных и уточнённых значений исходных данных.
- 3. Обоснованное формирование уточнённых значений исходных данных сопровождается контролируемым повышением качества результатов автоматизированной обработки материалов съёмки от 4 до 8,5%.
- 4. Предложенная методика может применяться при обосновании требований к материалам съёмки и прогнозировании показателей качества результатов идентификации элементов ландшафта.